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Abstract-In this paper, the general problem of stress singularities occurring near the free edge of two
bonded anisotropic materials is investigated. After formulating the problem of two bonded anisotropic
wedges, the stress singularity near the free edge of two bonded layers, at the tip of a crack between two
materials and in the vicinity of a broken layer is obtained by simply varying the wedge angles. It is shown
that, the power of singularity depends on the elastic properties of the anisotropic constituents. Several
examples occurring in real layered composites structures and i1Justr"ting this fact arc studied in some dctail.
Unlike the isotropic case the power of singularity at the tip of a crack between two materials can be real.

1. INTRODUCTION

In the recent past, research in anisotropic materials in general and in layered anistropic
materials in particular has attracted a great deal of interest. The reasons for this are the
ever-increasing use of composites in many structures and the fact that the failure resistance of
composites can be improved considerably without adding to the weight of the structure. Indeed
one attractive aspect of using composites is the possiblity of an economical design by reducing
the weight of the structure. In layered composite structures, one of the most important design
problems is the initiation and propagation of the so-called "delamination surface". From the
study of bonded isotropic materials[l-3] it is well known that, the stresses near a free edge
have a weak power singularity and under certain loading conditions, the normal stress can be
tensile, thus enhancing the possibility of delamination failure. After the formation of new
delamination surfaces, under sustained or excessive loading conditions the "crack" or
"delamination surface" may further propagate in a stable or unstable manner. It is clear that,
the severity of the power of singularity may have a decisive bearing upon the initiation and
propagation of such delamination surfaces. Treated as sin~le layers, the constituents of layered
composites may in general be treated as anisotropic materials. Even though it is very difticult to
determine all the material constants (a/j) of an anisotropic material, fiber-composites are usually
modeled as orthotropic materials, one of the principal axes of orthotropy coinciding with the
direction of fibers. However, if the axes do not coincide with the fiber directions, the material
becomes fully anisotropic in the new coordinate system and must be treated as such. The
material constants are then found by a simple coordinate transformation. The existing solutions
of bonded materials deal with either isotropic[l-31 or othotropic materials [4-7]. Lately, the
problem of free edge singularities has been considered in [l3]. In this paper, the stress state near
the free edge of two bonded anisotropic materials will be studied by using Lekhnitskii's general
formulation [8, 9] and Williams' method[10, 11]. First, the general asymptotic solution for two
bonded wedges is given. Then by varying the wedge angles the stress singularities near the
free-edge of two bonded anisotropic materials, near a crack tip at the interface of two materials
and in the vicinity of a broken laminate are computed for different anisotropic materials
obtained by varying the ply angle. Finally an example illustrating the dependence of the power
of singularity on the wedge angle is given, and the application of the method to the finite
element technique in formulating the special elements is discussed.

2. GENERAL FORMULATION

Consider two anisotropic wedges perfectly bonded along the x-axis (Fig. 1). In many
applications the loads do not vary in z-direction and the dimension of the plate in the
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Fig. 1. Geometry of the problem.

z-direction is large enough to warrant the assumption that the stresses and displacements are
independent of the z-coordinate. Since the materials are anisotropic the x-y plane is not a plane
of symmetry. Therefore, despite the fact that the problem is two dimensional, the x-y plane
will not remain plane after deformation, and the stress state will be three-dimensional. This type
of deformation is referred to as "generalized plane strain" or "generalized plane deformation".
For an anisotropic material, the stress-strain relations can be written as:

(2.1)

where aij(i, j = I, 6) are the elastic constants. Under the assumptions stated earlier we have
E, = 0 and the third equation of (2.1) gives:

Substituting (2.2) into eqns (2.1), we obtain:

Ex = {3\1(Jx + {3t2(Jy + {314Ty, + {315Txz + {316Txy

Ey ={312(Jx + {322(Jy + {324Ty, + f325 Txz + {326Txy

(2.2)

(2.3)

(J, is given by (2.2) and, f3jj =aij - an aol a33 (i, j = 1,2,4,5,6). Since we are mainly concerned
with the singular state in the vicinity of the wedge vertices, it is sufficient to consider the
homogeneous part of the solution only. Thus, if the stresses are related to the stress functions
F(x, y) and t/J(x, y) by means of the following expressions,

(2.4)

then the equilibrium equations are satisfied identically and the compatibility equations reduce to
[8],

(2.5)

(2.6)
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where the differential operators L2, Ll , L.. are defined by.
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(2.7)

(2.8)

a4 a4 a4 a4 a4
L4= 1322 a? - 21326 ax3ay + (21312 + 1366) axZal- 21316 axay3+ 1311 at· (2.9)

Eliminating l/1 from eqns (2.5) and (2.6) the following sixth order differential oquation is
obtained:

(2.10)

The sixth-order operator can be decomposed into six linear operators of the first order,
giving[8]:

(2.11)

where,

(2.12)

the IJ.n(n = 1, 2•.... 6) being the roots of the following characteristic equation:

with

'2(1J.) = 13sslJ.2- 2134slJ. + 1344

'3(1J.)13lsIJ.
3
-(1314+ 13sJIJ.2+(132S+ 13..J1J. - 1324

'..(IJ.) = 13111J." - 213161J.3+ (21312 + 136J1J.2- 21326J.1. + 1322

(2.13)

(2.14)

It has been shown that [8] the IJ.n(n =1, 2, ... 6) which are the roots of (2.13), depend heavily on
the elastic constants of the material and are either complex or purely imaginary.

Considering the geometry of the structure, the cylindrical coordinates are the natural
coordinates of the problem. Thus, if we can transform all field quantities to the cylindrical
coordinates (r, 8, z), then the expression of the boundary conditions will become extremely
simple. After some algebra it can be shown that, in the cylindrical coordinate system the governing
eqn (2.11), takes the following form:

(2.15)

where the linear operators DII, are given by:

(2.16)

and the stress components can be expressed as,

(2.17)
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where ¢* and t/J* are the new stress functions. Assuming that the iL are distinct, the general
solution of (2.IS) is of the following form: "

(,

¢* := L F"*[r (cos 0+ iL" sin e)]
"~1

.1,* - ~ "(iL,,) o¢* [ ( . )J
'I' - - £J -/( )~ r cos 6+iL" sm II

,,;1 2 iL" aZ"

(2.18)

(2.19)

where z" denotes the argument r (cos 8+ iL" sin 8). If one assumes that the functions F"*
(n =: I, 2, ... 6) can be written as power series in terms of the argument r(cos 8+ ILn sin 8), and
considering the fact that we are looking for a singular type solution, it is then suffident to
consider the leading term of the series only. Thus, assuming that the power of the leading term
in the series is A, the stress functions ¢* and t/J* may be expressed as:

(,

¢* :: L A"rA(cos 8+ iL sin W
,,;1 "

6

t/J* =~ Al)"A"rA- 1(cos 6+ iL sin W-1

,,~I "

where A" (n =: 1, .... 6) are unknown constants and,

[) := _liiL,,) . 2
" MiL,,)' n = 1, , ... 6.

Using expressions (2. J7), the stresses are obtained as:

(,

(T, = 2: ,\(A -l) A"rA-2(-sin e+ iL cos 6)2(COS 8+ iL sin 8)H
n:::l n n

(,

(T8 = 2: A(A -l}A"rH (cos 6+ iL sin 8)A
,,=1 "

(,

1"8:: - ~ A(A -l)A"rH
( - sin 8+ iL cos 8}(cos 8+ iL sin 8)H

n=1 n n

(,

1'8: :: - ~ A(A -1)A"8,,rA-2 (cos e+ iL sin 8)H
n=1 11

(2.20)

(2.21)

(,

1',z = ~ A(A - 1)A"8,,rH (-sin 8+ J.l. cos 9)(cos8 + J.l." sin 8»).-1. (2.22)
n=l n

The other field quantities needed in the formulation of the problem are the components of the
displacement vector. The cartesian components of the displacement vector u, v, ware given
by[8}:

(,

u = ~ AA"p"rA
-

1(cos 8+ iL sin 8)H
n=1 n

(,

v =~ AA"q"rA
-

1 (cos 8+ J.l. sin 8)A-!
,,=1 "

(,

w=~ AA"s"rA- 1 (cos 8+ iL sin 8)A-1
n=t "'

(2.23)

where the expressions (2.20) and (2.21) are used in deriving eqns (2.23) and the constants Pm q",
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and Sn are expressed as:

Pn = 1311,.,.2+ 1312- 131""" + 8n(1315""n - (314)
n n

Sn = 1314 ~+13~4 - 1346 +8n (1345 - 13,.,.44)
n n

(n =I, 2, ... 6).

The components of the displacement vector in cylindrical coordinates (u" U/II uz) can be
obtained by the following simple transformation:

Thus,

where

U, =U cos (I +v sin (I

Us =-u sin (I +v cos (I

Uz =w.

Crn =Pn cos (I + qn sin (I

Cen =-Pn sin (I + qn cos (I

(n = 1,2, ... 6)

(2.25)

(2.26)

(2.27)

3. APPLICATION TO THE TWO-WEDGE PROBLEM

Consider the two bonded anisotropic wedges shown in Fig. 1. The bounding surfaces are
stress-free and it is further assumed that the structure is loaded at infinity with self-equilibrating
forces. Thus, the following homogeneous boundary and continuity conditions can be written:

u/lG(r,O) =u/I"(r, 0)

T~(r, 0) =T~(r, 0)

T:Z(r,O) =T~z(r, 0)

u,G(r, 0) =u,"(r,O)

UsG(T,O) =u/I"(r,O)

uzG(r,O) =ut"(r,O)

us"(r, a) =0

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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T ;;, (r. ex) = 0 (3.8)

T~Z<r, 0) =0 (3.9)

uRa(r, -4» =0 (3.10)

T~,,(r, -cf»=0 (3.11 )

T~:(r, - 4» = O. (3.12)

Using expressions (2.22) for the stresses and (2.26) for the displacements, the boundary and
continuity conditions (3.1)-(3.12) give:

6 6

~ A/ - ~ An
b = 0

n==1 "=1

6 6

L A/ Il
a

- ~ An
b
Il

b =0
n=1 n n=l n

6 6

L Anao/ - L A/on
b= 0

n=1 n=1

6 6

L A/p/ - L Anbpnb=0
11=1 n=l

6 6

L Anaq/ - L A/qnb= 0
n=1 n=1

6 6

L A/s/ - L Anbs/ =0
n=1 n~1

6 ( AL An" cos IX + JL" sin IX) =0
11= I n

6 ) ( A-IL A/(-sin IX + JL" cos IX cos IX + JL" sin IX) =0
n= 1 n n

6

L Alia (sin cf> + JLa cos cf>)(cos cf> - JLa sin cf»A-1 = 0
'1-0: 1 n n

6 ( )A-I&-1 AnaOna cos cf> - ~a sin 4> =0

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

where A/ and A/ (n = 1, 2, ... 6) are unknown constants. Equations (3.13)-(3.24) constitute a
12 x 12 system of homogeneous equations for the 12 unknowns Ana and A/. For a non-trivial
solution the determinant of coefficients must vanish, thus giving the following characteristic
equation:

MA) = o. (3.25)

Equation (3.25) is a transcendental equation in Aand has infinite number of roots which can be
determined numerically.

4. SOLUTION AND RESULTS

As stated earlier, the main objective of this study is to determine the power of singularity
near the free edge of two materials. Equation (3.25) has infinite number of roots. By imposing
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the physical condition that the strain energy be bounded in a finite region around the bi-material
interface, it can easily be shown that the real part of Amust be greater than one. Furthermore, a
singular stress-state will prevail if only Re(A) < 2. Therefore, it is sufficient to search for a root
whose real part is the smallest and satisfies the following condition:

1<Re(A)<2. (4.1)

We assume that each layer is a fiber reinforced composite, such that the fibers lie in the y-z
plane, and make the angles - Oa*with the y axis. (The angles Oa* (a = a, b) are measured from
the y-axis in the counter-clockwise direction.) The engineering constants of the fiber reinforced
composite are given as follows:

EL = 163.4 X 109 N/m2

ET = 11.9 X 109 N/m2

Ez = 11.9x 109 N/m2

GLT = 6.5 X 109 N/m2

GZL = 6.5 X 109 N/m2

GZT = 3.5 X 109 N/m2

JILT = 0.3

VLZ = 0.3

vn = 0.5

The constants aij (i =1, .... 6, j =1, .... 6) which appear in eqns (2.1) can be obtained by
rotating the material by an angle 00 * about the x-axis. Thus, the composite material which can
be considered as orthotropic in the (L, T, Z) coordinate system is fully anisotropic in the (x, y,
z) coordinate system. Since the solution given in this paper breaks down for orthotropic
materials,t the following restrictions are imposed on the angles Oa *:

(4.2)

Using the general two-wedge formulation, the following problems are studied:
(a) Two bonded layers with a stress free-edge (Fig. la): This problem arises in studying the

edge effects or boundary layer effects in composites. For this case, the wedge angles are taken as
a =90° and cP =90°. The stress singularity is computed for different composite materials obtained
by varying the angle 0"* that the fibers make with the y-axis (Table 1). The results show that the
power of singularity (A - 2) is real, and although it can vary from material to material, remains
relatively small.

(b) The case of a broken laminate (Fig. 2b): This geometry is obtained by letting a = 90° and
cP = 180°. The variation of the power of singularity is given in Table 2. It can be observed that
for this case the power of singularity (A - 2) is again real, close to - 0.5 and is much higher than
that obtained for the previous case. The implication of this is that, from the viewpoint of
delamination failure the case of a broken laminate appears to be more severe than that of a
free-edge.

(c) A wedge bonded to a half-plane (Fig. 2c): In this case the ply angles 0,,* and 0,,* are
fixed and the effect of the wedge angle a is investigated. The results are given in Table 3 and
are displayed in Fig. 3. As it can be observed from Fig. 3, the power of singularity becomes
more severe as the wedge angle increases, reaching the value of - 1/2 for a crack between two
anisotropic materials. For the particular material used in this paper, the power of singularity is
real for all values of the wedge angle a. However, for isotropic materials, it is known that the
power of singularity at the crack tip is complex (i.e. of oscillatory nature) with real part equal to
- 1/2 (see for example [12]). A complex power of singularity has for many years puzzled
researchers about its physical and mathematical meaning. Even though the physical explanation
of the complex power of singularity may still remain obscure, the results presented in this

tFor orthotropic materials differential eqns (2.5) and (2.6) uncouple. meaning thaI the plane elasticity problem and the
anti-plane problem must be formulated independently. Thus the roots j/.. given by the characteristic eqn (2.13) cannot be used
to construct the general solution.



Table I. Variation of the power of singularity (A-2) near the free edge of two layers with Ob* (Fig. 2a. with
Oa* = 30°)

.* -75· -60' -45· -30· -15· 15· 45· 60· 75'b

~ - 2 -0.0731 -0.0582 -0.0388 -0.0256 -0.0235 -0.0113 -0.0167 -0.0507 -0.0733

Table 2. Variation of the power of singularity (A-2) near the edge of a broken laminate with Ob* (Fig. 2b.
with Oa * = 30°)

* -75· -60' -45· -30· -15· 15· 45" 60· 75·8b

A - 2 -0.4184 -0.4333 -0.4490 -0.4578 -0.4614 -0.4559 -0.4355 -0.4229 -0.4187

Table 3. Variation of the power of singularity (A - 2) near the vertex of a wedge bonded to a half-plane
with the wedge angle. (Fig. 2c, Oa· = 30°. Ob· = 60')

11 5' 10 20 30 60 90' 120· 150 160 170 175 178 179·

(~-2) -0.0408 -0.0785 -0.1465 -0.2050 -0.3356 -0.4229 -0.4743 -0.4888 -0.4900 -0.4947 -0.4974 -0.4990 -0.4995
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(a) (b)

(0) (d)

Fig. 2. Geometry of problems considered in the study.
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Fig. 3. Variation of the power of singularity (A-2) with the wedge angle a, for a wedge bonded to a
half-plane (8" = 30",8.° =60").

paper, together with the explanation given in[4,5] may shed some light on the mathematical
explanation of the phenomenont. The characteristic equation (3.25) has infinite number of roots
some real, some complex. These roots depend heavily on the elastic constants of the anisotro­
pic constituents and the wedge angle. As shown in [4, S1 for orthotropic materials the dominant
root may be real or complex. Therefore, the oscillatory singularity found for a crack at a
bimaterial ~nterface is by no means a universal fact. For anisotropic materials the power of
singularity, as shown in this paper, may very well be real.

(d) A crack at the interface of two anisotropic materials (Fig. 2d): This configuration is
obtained as a limiting case of the problem studied in (c) by letting a-+ 180°. Since for a = 180°
the system of equation becomes unstable, the power of singularity in this case is obtained by a
limiting process, carried out by assigning to a closer and closer values of 180*. As stated earlier,
for this configuration the power of singularity is found to be real and equal to -1/2. The results
obtained in this paper are of great importance in performing the stress analysis of layered
composite structures. In real structures, generally the geometry is very complex to lend itself to

tit may be worthwhile to note that the oscillatory singularity found for isotropic materials is a direct consequence of the
linear theory used in modeling the material. It has been shown that, this anomaly disappears when the non-linear theory of
harmonic chlstic materials is used! 14).
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analytical formulation. Therefore, one has to resort to pllrely numerical techniques, such as the
finite element method. As shown in this paper, near free-edges, at the base of a broken
laminate, or near a crack tip between two layers the stress state is singular and the results
obtained by ignoring the singularity can be very erroneous, specially when computing physical
quantities near the singular field. Therefore, near a singular stress field, special elements must
be designed and incorporated into the finite element grid. The asymptotic expressions given in
this paper for the displacements and the strains can be used to formulate those special
elements.
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